NET CLS and CORBA IDL

Interoperability

IDL S CLS Mapping Specification
IOP.NET

Imput.

Report

Version

Date

Author(s)

Status

Visa

1.01

13.10.03

DUL, PRR

© ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

Copyright 2003 by ELCA Informatique SA

Av. de la Harpe 22-24, 1000 Lausanne 13, Switzerland
http://www.elca.ch/

All rights reserved.

Notice

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
ELCA MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall ELCA be liable for
errors contained herein or for indirect, incidental, special consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third
party. No part of this work covered by copyright herein may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—uwithout permission of the
copyright owner.

OMG and Object Management are registered trademarks of the Object Management Group,
Inc. Object Request Broker, OMG IDL, ORB, CORBA are trademarks of the Object
Management Group, Inc. Microsoft, .NET are trademarks of Microsoft Corp.

VvV 1.01/13.10.03/DUL, PRR 2144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

l. Table of Content

l. LI 101 1SN0) B @ Y] = o | S 3
Il. ReCOrd Of Changes ..o 6
Il. =] =T =] ol = 6
V. ADDIEVIATIONS ... 6
V. Prefaceo 7
1 L@ Y] T 8
11 Mapping Definitions and RESIICLONScoooviiiiiiiei e 8
1.2 Type SyStemM’S DEfiNITIONSuuiiiiiiiiiiiiiiiiiiiiibiib bbb neenee 8
L 2. LS i 8
L.2.2 OMG IDL e 8
1.3 DOCUMENE STIUCTUIE ...ttt e et e et e e e eea s 8
1.4 FULUIE WOTK ... 8
2 YT oY o1 g Yo o) O IS T 1Y/ o 1= PR 10
2.1 The IDL SUDSEt Of (NET CLSiiiiiiiiiiiiiiiiiiiiiinieiieraenennneieernreeennnreeneereesneseneeens 10
2.1.1 ConfOrming TYPES....ccciiiiiiiiiiii e 11
2.1.2 NON-conforming TYPEScovviiiiiiiiii 11
2.1.3 NON-MAPPADIE TYPES ...ttt e e e e e e e e e 11
2.2 Mapping CLS Names t0 IDL NaMES........ciiiiiiiiiiiiiiies ettt 12
2.2.1 Mapping CLS Namespace Names to Module Names............cccccceeiiiiiiinn. 12
2.2.2 CLS Names that Clash with IDL KEYWOrdS..........cccoeeiieeiiiiiiiiiiiee e 12
2.2.3 CLS Names with Leading UNAErSCOIES..........oovvvuiiiiiiiie e 12
2.2.4 CLS Names with lllegal IDL Identifier Characters............ccccccvvvvviiiiiiiiiiiiiiiiiiiiiinee, 12
2.25 NamMeES fOr INNEI CIaSSES....uuuuiii it e e e e e 12
2.2.6 Overloaded Method NamMES...........ccouiiiiiiiiiiii 12
2.2.7 Names Differing only iN CaSecoouviiiiiiiiiiiiiiii 13
2.3 Mapping fOr NAMESPACESccoeiieeeeeeee e 13
2.3 1 EXAMPIE e 13
2.4 Mapping for PrimMiItiVe TYPESuui i 13
2.5 V=T o £ PP 14
2.6 [D1C] (T F L = TP 14
2.7 LO070] 011221 | K= J U UPPPPPPPRR 14
2.8 Conforming Reference Types (MarshalByRefObject and Subclasses)................... 14
2.8.1 Special Case for MarshalByRefODJECTcovvviiiiiiiiiiiiiiiiiiie 14
2.8.2 Inherited INEIACEScooviiiiiie 14
2.8.3 Inherited Base ClasScouuiiiiiiiii e 14
P < IR S ©70] 0111 €8 [ox (0] = F TP 14
2.85 FIEldS .o 14
P S T T o o o 1= 11T TP 15
P2 = T A Y/ 1= 1 T Yo £ 15
2.8.8 REPOSIHONY ID ..o 15
2.8.9 SPECIAI CASES ..uuvuiiiii ettt ————————— 15
2.8.10 EXAMPIE..cooiiiiiiii 15
2.9 Conforming ValUe-TYPES......ccoviiiiiiiiiiiiiiiiieeee ettt 16
2.9.1 Inherited Base ClasScouuiiiiiiiiiie 16
2.9.2 Inherited INEITACESooviiiiiii 17
Vv 1.01/13.10.03/DUL, PRR 3/44

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.9.3 MEENOAS ... 17
P IR S ©70] 0111 €8 [ox (0] = F PSPPI 17
2.95 FIeldS oo 17
e B T o o o 1= 11T TP 17
e B A =T 0T 1S3 (o) Y/ | S 17
2.9.8 SPECIAI CASEScoiiiiiiiiiiiii 17
2.9.9 EXAMPIE ..o 18
2.10 System.Exception and SUDCIASSES.........c.ooviiiiiiiii i 19
2.10.1 GeneriCUSErEXCEPLIONccoviiiiiiiiiiiiee e 19
2.11 B U 19
0 R R = T2]][19
2.12 N 1 = 1Y TSP 20
2.12.1 ONe-dIMENSIONAI AITAYScciiiiiiiiiiiiiii e 20
2.12.2 MUlti-diMENSIONAI AITAYSvvuuiiii e e ee it e e e e e e e e e e e e e e e e 20
2.12.3 EXAMPIE e e 20
2.13 NON-CONTOMMING TYPES ..ottt 21
2.13.1 SYSIEM.ODJECT....cciiiiiiiiiiiii e 21
2.13.2 SYSIEMLVAIUETYPE ... ittt e e e e e e 21
pZ TR T [01 (=T o = (o = 21
2.13.4 Non-conforming Value TYPEScouviiiiiiiiiiiiii e 22
2.14 (OISR N 1] 01U (= PP 22
2.15 Preventing Redefinition of TYPEeS.......cooiiii e 23
2.15.1 EXAMPIE ..o 23
3 MappPing Of OMG IDL TYPES . .ii it e e e e e e e 24
3.1 N F= T =SS PP PRSP 24
3.1.1 Names that Clash with C# and VB.NET Identifiers.........ccccccccvviriiiiiiiiiiiiiiiiiiiiinnnnn, 24
3.2 Mapping Of MOAUIE............oooi e 24
3.2 1 EXAIMPIE it 24
3.3 BaSIC Ty P oo 24
3.3.1 Unsigned INtEral TYPES ...iie e e e e e et aeaeeaaens 25
3.3.2 SUNG AN WSEING « ettt ettt ettt e ettt ettt e et e ettt et et e e e e e e e e e e eeeees 25
3.4 IDLENTIY INEITACE ..o 26
3.5 B UM L et a et er e 26
IR T0 R = 11 4 o] PRSPPI 26
3.6 1)1 1 o PP UUPPRTROPPIN 26
3.7 UNION 27
3.8 YT |8 =] o o = 29
3.9 Y £ =TT PP SRRPP 30
3.10 1] (T = Lo = 30
3.10.1 Inheritance Hierarchy Mapping...........ccoiiiieeiiiiieiiiiie e 30
0 0 I T AN 1o 0 (PP 30
1 700 10 TG T /11 1 T Yo £ 30
3.10.4 HPragMa ID ... 31
3105 EXAMPIE ... e e e e e e e e e aaaaaannn 31
I O G 1@] =] = 7 N @] o =) PP 32
3.10.7 CORBA:ADSITACIBASEcevviiiiiiiiiiiiiiiiiiiiiiieiiti ettt ettt e e eeees 32
3.11 RV (U I =TSP 32
3111 HPragmMa ID ... a e e ennne 32
1 700 I 2 [o =T 17> g o] T 32
0 I I T 1 1 o o £ PP PP 33
VvV 1.01/13.10.03/DUL, PRR 4/ 44

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

3.11.4 IDL-AMIDULES .ottt e e e 33
3.11.5 CONCIEte VAlUE TYPES...ceeiiiiiiiiiiiiiiiieie ettt ettt et et e e e e e e e e e e e e eeeeeeeeees 33
3.11.6 ADSIrACE VAIUE TYPES ..oeeeiiiiiiiieiieiiiieeee ettt ettt ettt ettt e e e e e e e eeeees 34
3.11.7 BOXEA VAIUE TYPES .. ittt i et e ettt e e e e e e e e ettt e e e e e e e e e e e ratt e s e e e eaeeeannees 35
3.11.8 CORBAIVAIUEBAESEcoiiiiiiiiiiieieeee ettt 36
3.12 EXCBPHIONS .o 36
3.12.1 Mapping Of CORBA EXCEPLIONSceiviiiiiiiiiiiiiiiiiiiiieieieee ettt 36
3.12.2 Mapping of user defined EXCEPLIONS.........ccoiviiiiiiiiii i 38
3.13 AANIY ettt e e e e et b ettt e e e e e e e bbb e reaaaeeaaaaan 39
3.14 NS OO Ty S ..ttt 39
3.15 B3/ 0= = TR 39
3.16 USEA ATIDULES. ...t e e e e e e r e ae s 40
4 Marshalling / Unmarshalling.........coooooiiii e 42
4.1 Marshalling of Parameters During Methods Calls..............cccooiii, 42
4.2 Marshalling / Unmarshalling of Value-TYPesccooiiiiiiiiiii e 43
VvV 1.01/13.10.03/DUL, PRR 5/44

ELCA Informatique SA, Switzerland, 2003.

ELCA

. Record of Changes

Filename Version Date

CLSIDLMappingSpec.DOC 1.01
CLSIDLMappingSpec.DOC 1.00
CLSIDLMappingSpec.DOC 0.93
CLSIDLMappingSpec.DOC 0.92
CLSIDLMappingSpec.DOC 0.91
CLSIDLMappingSpec.DOC 0.9

. References

29.09.03
10.06.03
1.06.03
15.05.03
22.04.03
16.03.03

IDL S CLS Mapping specification

Description / Author

Added IDL union support / DUL
First release / PRR

Revision after internal review / PRR
Revision / PRR

Revision / PRR

First draft / DUL

[1]OMG, The Common Object Request Broker: Architecture and Specification;

version 2.3.1; www.omg.org

[2] OMG; Java to IDL Language Mapping Specification; version 1.2

www.omg.org

[3]OMG; IDL to Java Language Mapping Specification; version 1.2

www.omg.org

[4]ECMA, ECMA-335 Common Language Infrastructure (CLI)
http://www.ecma-international.org/

V. Abbreviations

CLS (.NET) Common Language Specification

CLR (.NET) Common Language Runtime

CORBA Common Object Request Broker Architecture
ECMA European Computer Manufacturers Association
IDL (CORBA) Interface Definition Language

IOP (CORBA) Internet Inter-ORB Protocol

OMG Object Management Group
ORB (CORBA) Object Request Broker
RMI (Java) Remote Method Invocation

VvV 1.01/13.10.03/DUL, PRR
ELCA Informatique SA, Switzerland, 2003.

6/44

ELCA

IDL S CLS Mapping specification

Preface

About ELCA

ELCA Informatique SA was founded in 1968. It is head-quartered in Lausanne with
branch offices in Zurich, Geneva, Bern, London and Ho Chi Minh City (Vietnam).

With over 350 top-level engineers who mainly graduated from the Federal Institutes
of Technology and other famous Universities, ELCA is one of the leading Swiss
information technology services companies. ELCA has been ISO 9001 certified
since 1993.

ELCA’s vital statistics:

= 21 nationalities

= 20 languages

= 40Ph.D.s

= 11 university disciplines

= Software used in 34 countries
ELCA's areas of expertise are :

» Business Information systems

» Data Warehouse

» Decision Support System

= Architectures and distribute systems
= Content and electronic document management
= CRM & Business Intelligence

* Enabling e-business

= Internet/ Intranet / Web factory

» Industrial systems

= Project support and supervision

Acknowledgements

This work was realized in collaboration with Prof. J. Gutknecht (Programming
Languages and Runtime Systems Research Group), ETH Zrich, and is based on
Dominic Ullmann’s diploma thesis.

Patrik Reali and Dominic Ullmann would like to thank Alain Borlet-Hote, Christian
Gasser, Philipp Oser, and Bernhard Rytz for reviewing this document and for their
many and valuable comments.

VvV 1.01/13.10.03/DUL, PRR 7144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

1 Overview

11

1.2

121

1.2.2

1.3

1.4

This document describes the mapping between the OMG IDL type system [1] and
the .NET CLS type system [2].

Mapping Definitions and Restrictions

This specification specifies a mapping for most of the IDL entities, respectively CLS
types. We distinguish between pure mappings and extended mappings.

Pure mappings rely on types having the same domain (i.e. set of values) in both
type systems, such that no runtime checks are needed in the conversion, and a
value for a given type is guaranteed to exist in the mapped type.

Extended mappings are defined for some commonly used types (e.g. strings), where
the source and the destination type have slightly different domains, and thus some
values may not be mappable. These mappings require extra care and must be
checked at runtime for correctness.

Finally, a few types have no mapping, because no appropriate type exists in the
destination type system (see 2.1.3).

Type System’s Definitions

CLS
The ECMA 335 standard version 1 [2, chap. 7-11] defines the Common Language
Specification (CLS) and the CLS type system.

OMG IDL

The OMG CORBA and OMG IDL specification (version 2.3.1) [1, chap. 3] defines
the OMG IDL type system. We use version 2.3.1, because this is same version as
used by the Java RMI/IIOP protocol.

Document Structure
In chapter 2, the mapping from CLS to IDL is specified.
In chapter 3, the mapping from IDL to CLS is specified.

Chapter 4 covers the marshalling and unmarshalling of types. This chapter is added
to show, that the specified mapping is adequate to support serialisation and
deserialisation of parameters.

Future Work

This mapping is not exaustive. A few mapping have not been investigated yet, and
will be clarified in a future release of the mapping. For the moment, these types and
constructs are considered “non-mappable”:

e CLS System.Decimal
* CLS Class fields

VvV 1.01/13.10.03/DUL, PRR 8144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

» IDL fixed, IDL long double

» IDL valuetype initializers

* IDL truncatable valuetypes

 IDL arrays

» IDL type codes

Furthermore, this specification shall be upgraded to the latest CORBA specification.

VvV 1.01/13.10.03/DUL, PRR 9/44
ELCA Informatique SA, Switzerland, 2003.

ELCA

IDL S CLS Mapping specification

2 Mapping of CLS Types

This chapter describes the mapping of .NET CLS to OMG IDL (version 2.3.1).

2.1 The IDL Subset of .NET CLS

This section defines the subset of the CLS that is mapped to the IDL and is thus
available for use with the 11IOP Protocol.

When dealing with a type system conversion, we must distinguish between
converting type definitions (mapping) and converting instances (marshalling). The
table below gives an overview of the relationships between convertions, types, and
instances.

Type t Instance of t
conforming marshallable
Mappable _ non-instantiable
non-conforming

non-marshallable

non-mappable

Obviously, types can be parted in mappable and non-mappable, and instances in
marshallable and non-marshallable. Less intuitive is, that those sets are different,
i.e. that not all instances of a mappable type are also marshallable. The reason for
this lies in the characteristics of the object-oriented type systems, which require an
instance type to be compatible (and not strictly equal) to the declared type.

The type system mapping takes place at two distinct moments, which reflect this
distinction: at design and compilation time, the type definitions are mapped; at
runtime the object instances are marshalled.

The CLS types are divided into conforming, non-conforming, and non-mappable
types. Instances of conforming types can be mapped to the IDL, whereas instances
of non-mappable types cannot.

Non-conforming types make a third category in-between: these types can be
mapped whereas their instances cannot be instantiated or cannot be marshalled
(but subclasses thereof may be marshalled).

Example: an interface defines a set of methods to be implemented by a class.
Interfaces are mostly mappable, but always non-instantiable. It must be resolved at
run-time, whether the object implementing the interface is marshallable or not.

Example: System.Object is non-conforming type: it is mappable to the IDL, but
instances thereof are not marshallable; however there exists types compatible to
System.Object that are conforming types: whether a parameter of type
System.Object can be marshalled or not, depends on the actual type of the object,
which must be conforming.

VvV 1.01/13.10.03/DUL, PRR 10/ 44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.1.1 Conforming Types

Conforming types have a mapping to OMG IDL, are instantiable, and instances of
these types can be serialized and deserialized.

The CLS conforming types are

» the primitive types Syst em Bool ean, System Byte, System Char,
System Doubl e, System|Intl1l6, SystemInt32, System|nt64,
System Single, System String, System Void (see section 2.4)

= the conforming reference types: Mar shal ByRef Cbj ect and subclasses
thereof (see section 2.5)

= the conforming value types: all subclasses of Mar shal ByVal ueConponent ,
and all serializable structures and classes (see section 2.9).

= the CLS exceptions (see section 2.10)

= the | nt 32-based enumerations with no associated constant values (see
section 2.11)

» the arrays of conforming types (see section 2.12)

2.1.2 Non-conforming Types

Non-conforming types have a mapping to OMG IDL; variables declared with a non-
conforming type can be serialized and deserialized only when the dynamic type is a
conforming type. Non-conforming types usage is restricted to method signatures,
field declarations and inheritance relationships.

The following CLS types are non-conforming:
= System Obj ect (section 2.13.1)

= System Val ueType (section 2.13.2)

= Allinterface types (section 2.13.3)

= Non-conforming value types (section 2.13.4)
All mappable CLS types, which do not belong to another category are
considered as non-conforming value types.

2.1.3 Non-mappable Types

Non-mappable CLS types cannot be mapped to the IDL. The following types are
non-mappable:

= SystemIntPtr, System Deci nal

= Enumeration with i nt 64 based type, marked as f | ags, or with associated
constant values. (section 2.11).

IntPtr is not mappable, because pointers cannot be mapped across different
domains; Decimal will be addressed in the future; IDL enumerations can only be
based on int32 types.

VvV 1.01/13.10.03/DUL, PRR 11/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.2

221

2.2.2

2.2.3

224

2.2.5

2.2.6

Mapping CLS Names to IDL Names

In general, CLS names are mapped to the equivalent name in OMG IDL. However,
there are some exceptions (listed below) when the CLS name is not a legal identifier
in OMG IDL.

Mapping CLS Namespace Names to Module Names

Each namespace is mapped to an IDL module; nested namespaces are mapped to
nestes IDL modules (see Section 2.3).

A CLS namespace a. b. ¢ is mapped to an OMG IDL module : : a:: b::c (a
leading “: : " is added and each separation dot is replaced by two separation
semicolons).

CLS Names that Clash with IDL Keywords

CLS Names that clash with an IDL keyword are mapped to OMG IDL by adding a
leading underscore. The CLS name oneway is mapped to the OMG IDL identifier
_oneway (an escaped identifier).

CLS Names with Leading Underscores

For CLS Names that have leading underscores, the leading underscore is replaced
with “N_". Thus, _fred is mapped to N_f r ed. CLS Names beginning with “N_"
cannot be mapped.

CLS Names with lllegal IDL Identifier Characters

Given the current lack of support for Unicode in OMG IDL, we define a simple name
mangling scheme to support the mapping of CLS identifiers to OMG IDL identifiers.

Any illegal character is replaced by “U” followed by 4 hexadecimal characters (in
upper case) representing the character’'s Unicode value.
Names for Inner Classes

The name of an inner class is mapped to a composite name formed by the name for
the outer class, two underscores, and the name of the inner class.

For example, an inner class Fr ed inside a class Ber t is mapped to an OMG IDL
name of Bert __ Fred.

Overloaded Method Names

If a CLS method is not overloaded, then the same method name is used in OMG
IDL as in CLS.

Given the absence of overloaded methods in OMG IDL, we define a simple name
mangling for overloaded methods.

For overloaded methods, the mangled OMG IDL name is formed by taking the CLS
method name, appending “__ " followed by the fully qualified OMG IDL types of each

of the arguments separated by two underscores; leading “: : " and underscores are
removed, embedded “: : " and spaces are replaced with “__".
VvV 1.01/13.10.03/DUL, PRR 12/ 44

ELCA Informatique SA, Switzerland, 2003.

ELCA

2.2.6.1 Example

IDL S CLS Mapping specification

C#

| DL

G ass C : Marshal ByRef Obj ect {

Void Meth(int a);

interface C {
void Meth__long(long a);

char Meth(float x); wchar Meth_ float(float X);
} 1

Both methods in the IDL raise : : Ch: : El ca: : | i op: : Generi cUser Excepti on;
in the example the raise clause is omitted for clarity.
2.2.7 Names Differing only in Case

OMG IDL doesn’t support case sensitive names. Names differing only in case are
not supported.

2.3 Mapping for Namespaces

Each namespace is mapped to an IDL module; nested namespaces are mapped to

nestes IDL modules.

2.3.1 Example

CLS (CH) | DL
nanespace x.y { nmodul e x {
I nmodul e y {
} 11
b
3
2.4 Mapping for Primitive Types

The mapping for CLS primitive types is as follows:
CLS (class library name) OMG IDL
Syst em Bool ean Bool ean
Syst em Char wchar
System String . CORBA: : WBt ri ngVal ue
System Singl e fl oat
Syst em Doubl e doubl e
System | nt 16 short
System | nt 32 | ong
System | nt 64 | ong | ong
System Byte oct et
System Voi d voi d
System IntPtr not mappable

System St ri ng is mapped to the boxed value type : : CORBA: : Wt ri ngVal ue,
because in the domain of the IDL primitive type wstring, null is missing. Furthermore
the semantic of Syst em St ri ng is better represented by an IDL valuetype, than by
a primitive type.

VvV 1.01/13.10.03/DUL, PRR 13/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.5

Events

Events are not mapped to the OMG IDL, because there is no corresponding type.

2.6 Delegates
Delegates are not mapped to the OMG IDL, because there is no corresponding
type.

2.7 Constants
Constants are not mapped to the OMG IDL, they will be treated in a future version of
the mapping.

2.8 Conforming Reference Types (MarshalByRefObject and

Subclasses)

Object instances compatible to Mar shal ByRef Cbj ect can be invoked remotely in
the .NET Remoting framework. These objects are remotely represented with
references to the original object, which resides in a .NET managed environment.
A conforming reference type is mapped to an OMG IDL public interfaceinan
OMG IDL module corresponding to the type’s namespace; the type’s name is
mapped according to 2.2.

2.8.1 Special Case for MarshalByRefObject
As a special case, any explicit use of MarshalByRefObject is mapped to the OMG
IDL type CORBA: : (hj ect .
All conforming classes inherit from Mar shal By Ref Cbj ect . This inheritance is
represented in the mapping as the implicit inheritance of IDL interface types from
CORBA: : (bj ect .

2.8.2 Inherited Interfaces
Each inherited interface in the CLS class is represented by an equivalent inherited
abstract interface in the OMG IDL (see Section 2.13.3).

2.8.3 Inherited Base Class
Each inherited class other than Mar shal By Ref Cbj ect is represented by an
equivalent inherited interface in the OMG IDL (see Section 2.8).

2.8.4 Constructors
Constructors are not mapped to IDL.

2.8.5 Fields
Fields are not mapped to IDL, they will be treated in a future version of the mapping.

VvV 1.01/13.10.03/DUL, PRR 14 /44

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.8.6 Properties
CLS properties are mapped to OMG IDL attributes. The property name is mapped
according to Section 2.2, the property type is mapped to the corresponding IDL type.
2.8.6.1 Read-only Properties
Properties having only the get accessor are read-only properties. The mapped
OMG IDL attribute is tagged with the r eadonl y attribute.
2.8.6.2 Write-only Properties
Properties having only the set accessor are write-only properties. These properties
cannot be mapped to the OMG IDL.
2.8.7 Methods

Public instance methods are mapped to OMG IDL methods in the corresponding
interface where:

1. the OMG IDL method name is generated as described in Section 2.2.
2. the CLS return type is mapped to the corresponding OMG IDL return type.

3. each parameter is mapped to an OMG IDL parameter with the corresponding
OMG IDL type; the CLS parameter modifiers are mapped as follows:

CLS parameter modifier | IDL parameter modifier
ref in out

out out

default In

»

the raise clause throws the generic exception
Ch::Elca::liop::GenericUserException.

Only the public instance methods defined in the current class are mapped; method
inherited from other classes or interfaces are defined in the type that defines them.

Non-public instance methods and static methods are not remotely accessible, thus
they are not mapped.

2.8.8 Repository ID

A repository id is assigned to the mapped OMG IDL interface with a #pr agma | D
directive.

The repository ID is in OMG IDL format, as specified in [1], Interface Repository
chapter, Section 10.6.1, page10-39.

2.8.9 Special Cases

Types implementing the marker interface IDLEntity are not mapped to the OMG IDL,
because they are CLS conversions of types already defined in OMG IDL.

2.8.10 Example
Il C#
nanespace a.b.c {
public interface OPInterfacel {
public void nethodl(int a, int b);

VvV 1.01/13.10.03/DUL, PRR 15744
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
}
public class Cassl : Mrshal ByRef Obj ect, OPInterfacel {
public void nethodl(int a, int b) {
/1 sonme inpl
}
publ i c Marshal ByRef Gbj ect met hod2() {
/1 sonme inpl
}
}
}
/1 1DL
nmodul e a {
nmodul e b {
nmodul e ¢ {
abstract interface OPInterfacel {
void nmethodl(in long a, in long b) raises
(::Ch::Elca::liop::GenericUser Exception);
1
#pragma | D OPInterfacel "IDL:a/b/c/OPlnterfacel:1.0"
interface Cassl : OPInterfacel {
bj ect et hod2()rai ses
(::Ch::Elca::liop::CenericUserException);
3
#pragma I D Classl "IDL:a/b/c/C assl:1.0"
1
1
3

2.9 Conforming Value-Types

Conforming value types are user-defined conforming types, whose instances are
passed by value.

Value types may be passed as arguments or results of remote methods, or as fields
within instances of other value types.

Conforming value types are
= concrete CLS classes and structs marked with the attribute Seri al i zabl e
= concrete CLS subclasses of Mar shal ByVal ueConponent .

Conforming value types are mapped to an OMG IDL val uet ype with the
corresponding OMG IDL name (see Section 2.2) in the OMG IDL module
corresponding to the CLS type’s hamespace.

2.9.1 Inherited Base Class

Each inherited class other than Mar shal ByVal ueConponent , Syst em Qbj ect,

or Syst em Val ueType is represented in the OMG IDL by an equivalent inherited
abstract or concrete valuetype.

VvV 1.01/13.10.03/DUL, PRR 16/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.9.2 Inherited Interfaces
Each inherited interface in the CLS class is represented by an equivalent inherited
abstract interface in the OMG IDL (see Section 2.13.3).

2.9.3 Methods
Only non-private methods are mapped to the OMG IDL. The rules for conforming
reference types apply (see Section 2.8.7) but for the raise clause, which is left
empty.

2.9.4 Constructors
Constructors are not mapped to OMG IDL. Remote objects are accessed through
interfaces, which do no support constructors.

2.9.5 Fields

Non-private fields are mapped to public IDL state members, private one’s are
mapped to private members. The type of the state member is the mapped type of
the CLS field.

The ordering of the fields in the IDL defines the order, in which the fields are
serialized, thus the IDL states must be declared in the same order as in the CLS

type.
Exceptions

A field is not mapped, if
» the field type is not mappable
» the field has the NonSeri al i zabl e attribute

2.9.6 Properties
Properties are mapped according to the rules in Section 2.8.6.

2.9.7 Repository ID
Repository ID are mapped according to the rules in Section 2.8.8.

2.9.8 Special Cases
For the following conforming value types, a special mapping is provided:
= System Type

Furthermore, types implementing the marker interface IDLEntity are not mapped to
the OMG IDL, because they are CLS conversions of types already defined in OMG
IDL.

2.9.8.1 System.Type

System.Type contains the metadata information about a given CLS type; this
information is useless for CORBA, because it relies on a different type system; the
corresponding information is the repository-ID (or an IDL type-code). Therefore
Syst em Type is mapped to the following IDL-Type:

nodul e System {

VvV 1.01/13.10.03/DUL, PRR 17744
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
val uet ype CORBATypeDesc {
public ::CORBA: : W5t ringVal ue repositoryl D
1
#pragma | D CORBATypeDesc "I DL: Syst eml CORBATypeDesc: 1. 0"
3

Only classes and structs can be represented using this mapping.

Note: in an future mapping, IDL type-codes should be used instead, because they
can describe every type.

2.9.9 Example

Il .NET (C#)
nanespace af
[Serializabl e]
public class TestBase {
public TestBase(int x) {
mx = X;
}

public int mx;

public void inc() {
m X++;

}

}

[Serializabl e]

public class TestValue : TestBase, | Conparable {
public int ConpareTo(Object obj) {

/1
}
public void add(int y) {
Il
}
}
}
/1 1DL

nmodul e System {
abstract interface | Conparable {
| ong ConpareTo(any obj) raises
(::Ch::Elca::liop::CenericUserException);
3
#pragma | D | Conparabl e "1 DL: Systeni | Conpar abl e: 1. 0"

3
nodul e a {
val uet ype Test Base {
public long mx;
void inc();

H

VvV 1.01/13.10.03/DUL, PRR 18744
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
#pragma | D TestBase "I DL: a/ Test Base: 1. 0"
val uetype TestVal ue : TestBase supports | Conparabl e {
voi d add(long vy);
Lbr agma | D TestVal ue "I1DL: a/ Test Val ue: 1. 0"
b

2.10 System.Exception and Subclasses

Exceptions are problematic, because CLS methods do not have a raise clause to
specify which exceptions are thrown. Therefore every exception occurring during a
remote method invocation must be mapped to one of the standard CORBA-
Exceptions or to a Generi cUser Excepti on.

2.10.1 GenericUserException

GenericUserException is defined as follows:

Modul e Ch::Elca::liop {
exception GenericUser Exception {
:: CORBA: : Wst ri ngVal ue nane;
. CORBA: : Wt ri ngVal ue message;
: 1 CORBA: : Wat ri ngVal ue t hr owi nghet hod;
}
}

2.11 Enum

Enumerations based on a type other than Syst em | nt 16 and Syst em | nt 32
(the default base type), with assigned constant values, or with the Fl ags (bitfields)
attributes are not mappable to the OMG IDL.

CLS Enums are mapped to the OMG IDL enumtype. The type name is mapped
according to Section 2.2.

The named constant names are mapped to an OMG IDL name and prefixed with the
IDL enumeration name followed by an underscore.

2.11.1 Example
Il .NET (CH#)
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

//1DL
enum Days {Days_Sat, Days_Sun, Days Mon, Days Tue, Days_ Wd,
Days_Thu, Days_Fri};

VvV 1.01/13.10.03/DUL, PRR 19/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.12 Arrays

2.12.1 One-dimensional Arrays

CLS one-dimensional array types are mapped to an IDL boxed value type
containing a sequence, the sequence type is the mapped array element type.

Jagged arrays (arrays of references to other array) are one-dimensional arrays of
references.

The name of the boxed value-type is the concatenation of “seq<n>_" and the
mapped array-element type, where <n> is the number of dimensions of the array
type.

The array dimension is defined as:
= 1, for arrays whose element is not an array.
= 1+d, for arrays whole element is an array of dimension d.

For primitive types, the boxed sequence is declared in the module

;1 org::ong: boxedArray; otherwise the module is : : or g: : ong: boxedArr ay
concatenated with module name of the element type. Thus, an array with base type
:ai:bicis defined in the module : : or g: : ony: : boxedArray: : a:: b.

The repository ID is assigned according to Section 2.8.8.

Note: At runtime, the size of the actual array instance is contained in the instance of
the sequence.

2.12.2 Multi-dimensional Arrays
Multi-dimensional array are treated as jagged array.

Runtime checks must be performed, when a muli-dimensional array is returned from
another ORB, to ensure that the array is legal.

2.12.3 Example

Il C#

int[][]
a.b.d]

/1 1DL
nmodul e org {
nodul e ong {
nodul e BoxedArray {
nmodul e System {
val uetype segl | ong sequence<l| ong>;
#pragma | D seql_ | ong
"1 DL: or g/ ong/ BoxedArray/ Syst enf seql | ong: 1. 0"
val uet ype seq2_| ong
sequence<::org::ong:: BoxedArray:: System:seql_| ong>;
#pragma | D seq2_I| ong
"1 DL: or g/ ong/ BoxedAr ray/ Syst enf seq2_I ong: 1. 0"
3

VvV 1.01/13.10.03/DUL, PRR 20/ 44
ELCA Informatique SA, Switzerland, 2003.

ELCA

IDL S CLS Mapping specification

nodul e a {
nodul e b {
val uetype seql C sequence<::a::b::C;
#pragma | D seql_C
"I DL: or g/ ong/ BoxedArray/ a/b/seql C 1.0"
1
1
1
1
b

2.13 Non-conforming Types

Non-conforming types can be mapped to the OMG IDL, but only instances which are
also compatible to a conforming type can be serialized.

Non-conforming types can only appear in an inheritance relationship, in a method
signature, in a field declaration, and in a property declaration.

2.13.1 System.Object

Syst em Obj ect is mapped to OMG IDL any.

A System bj ect in a method signature means that any conforming type can be
passed (an object reference or a value).

As an exception, an inheritance relationship with Syst em CObj ect is not mapped to
IDL.

2.13.2 System.ValueType

Syst em Val ueType is only allowed in inheritance relationships, to qualify a class
as value type. The inheritance relationship with Syst em Val ueType is not mapped
to IDL.

2.13.3 Interfaces

2.13.3.1

VvV 1.01/

A CLS interface is mapped to an abstract OMG IDL interface having a name
mapped according to Section 2.2.

The interface’s methods are mapped according to Section 2.8.6, the properties
according to Section 2.8.6.

Example

Il C#

public interface DNDoubl el nterface {
doubl e addDoubl eVal (doubl e val 1, doubl e val 2);
voi d i ncDoubl eVal (ref doubl e val);

}

/1 1DL
abstract interface DNDoubl el nterface {

13.10.03/ DUL, PRR 21/44

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
voi d i ncDoubl eVal (i nout double val) raises
(::Ch::Elca::liop::CenericUserException);
doubl e addDoubl eVal (i n doubl e val 1, in double val2) raises
(::Ch::Elca::liop::CenericUserException);
1

#pragnma | D DNDoubl el nt erf ace
"I DL: t est DN/ DNDoubl el nt er f ace: 1. 0"

2.13.4 Non-conforming Value Types

Non conforming value types are mapped to an abstract IDL value type with the
corresponding OMG IDL name. The repository id is assigned according to Section
2.8.8.

The inheritance relationships are reflected in IDL
Type Members
Only public methods are mapped to OMG IDL. These methods are mapped
according to Section 2.8.7.
2.13.4.1 Example
In this example NonConfValue is not a conforming value type, because it is abstract.
NonConfValue2 is not conforming, because the Serializable attribute is missing.
Il C#

[Serializabl e]

public abstract class NonConfVal ue {
public int b;

}

public cl ass NonConf Val ue2 {
public int a;
public void printA() {

Console. WitelLine("a: " + a);
}
}
/1 1DL
abstract val uetype NonConf Val ue {
1

#pragma | D NonConf Val ue "1 DL:t est DNV NonConf Val ue: 1. 0"

abstract val uetype NonConf Val ue2 {
void printA();
b

#pragma | D NonConf Val ue2 "I DL: t est DNV NonConf Val ue2: 1. 0"

2.14 CLS Attributes
Attributes are not mapped to OMG IDL.

VvV 1.01/13.10.03/DUL, PRR 22144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

2.15 Preventing Redefinition of Types

IDL-files support preprocessor directives for inclusion of external definition files. To
prevent type redefinition due to multiple file inclusion, all type definitions are
protected by an #i f ndef #endi f block.

The identifier used for the block starts with two underscores and is followed by the
fully scoped IDL-name of the type with every “: : " replaced by “_". The identifier
ends with two underscores.

Forward declarations are not protected.

2.15.1 Example

abstract interface DNDoubl elnterface; /*forward decl aration*/

#i f ndef __ test DN DNDoubl el nterface
#define _ test DN DNDoubl el nterface
nodul e test DN {

abstract interface DNDoubl el nterface {
voi d i ncDoubl eVal (i nout double val) raises
(::Ch::Elca::liop::GenericUser Exception);
doubl e addDoubl eVal (i n double vall, in double val 2)
rai ses
(::Ch::Elca::liop::CenericUserException);

b

#pragma | D DNDoubl el nt er f ace
"] DL: t est DN/ DNDoubl el nt erface: 1. 0"

H
#endi f

VvV 1.01/13.10.03/DUL, PRR 23144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

3 Mapping of OMG IDL Types

This section describes the mapping of the OMG-IDL type system to the CLS type
system.

3.1 Names

OMG IDL names are mapped to the equivalent name in CLS. However, there are
some exceptions (listed below) when the OMG IDL name is not a legal identifier in
CLS.

3.1.1 Names that Clash with C# and VB.NET ldentifiers

The CLS defines no keywords. Of the many source languages used to create CLS
definitions, we consider only C# and VB.NET, due to their wide acceptance.

If the mapped identifier clashes with a C# or VB.NET identifier, it must be prefixed
with an underscore.

3.2 Mapping of Module

Each OMG IDL module is mapped to a CLS namespace; nested modules are
mapped to nestes namespaces.

An OMG IDL module : : a: : b: : ¢ is mapped to a CLS namespace a. b. c.

3.2.1 Example

OMG | DL CLS(using C# notation)
nodul e x { nanespace Xx.y {
nmodul e y { I
1. }
3
1

3.3 Basic Types

The following table shows the basic mapping. In the cases, where the source
domain is different (usually smaller) than the destination domain, the third column
gives the exception to raise.

The potential mismatch can occur when the domain of the CLS type is different than
IDL. The value must be effectively checked at runtime when it is marshaled as an in
parameter (or on input for an inout). For example, Syst em Char is a superset of
IDL char.

Hint: Users should be careful when using unsigned types in IDL. Because these
types are mapped to signed types, a user is reponsible for ensuring that large
unsigned IDL type values are handled correctly as negative integers in CLS.

IDL-Type CLS Type (class library Exceptions
name)
bool ean Syst em Bool ean
Vv 1.01/13.10.03/DUL, PRR 24 | 44

ELCA Informatique SA, Switzerland, 2003.

ELCA

IDL S CLS Mapping specification

char
we har
oct et
string

wstring

short

unsi gned short
| ong

unsi gned | ong
| ong | ong
unsi gned | ong
| ong

fl oat

doubl e

| ong doubl e
fixed

voi d

Syst em Char
Syst em Char
System Byte
System String

System String

System I nt 16
System I nt 16
System | nt 32
System | nt 32
System | nt 64
System | nt 64

System Singl e
Syst em Doubl e
not present in CLS
not present in CLS
System Voi d

CORBA: :
CORBA: :

CORBA: :
CORBA: :
CORBA: :
CORBA: :

DATA_CONVERSI ON
DATA_CONVERSI ON

DATA_CONVERSI ON
MARSHAL
DATA_CONVERSI ON
MARSHAL

The | ong doubl e (IEEE double-extended 80bits floating point) and f i xed IDL
types cannot be mapped, because there is no CLS type with similar range and

properties.

3.3.1 Unsigned Integral Types

The CLS has only signed integral types (the CLR has unsigned integrals).
Therefore, unsigned integral types must be mapped to signed ones.

3.3.2 char, wchar, string, and wstring

VvV 1.01/13.10.03/DUL, PRR
ELCA Informatique SA, Switzerland, 2003.

The mapping of char to Syst em Char is an extended mapping, because the value
range of char is a subset of the range of Syst em Char . This is a problem when
values are converted from the CLS (e.g. in the case of return types or varargs),
because the source value could lie outside of the destination type’s legal range.

Mapping a st ri ng to a Syst em St ri ng suffers from exactly the same problems

as the mapping from char to Syst em Char .

To handle char (respectively st ri ng)conversions correctly, each field and
parameter of type Syst em char (respectively System St ri ng) has the boolean
attribute W deChar At t ri but e. With this additional information, the marshaller can
serialize and deserialize st ri ng/ wst ri ng correctly. Runtime checks prevent
passing of illegal values.

Furthermore, the attribute St ri ngVal ueAttri but e is used to recognize
Syst em St ri ng parameters or fields defined in OMG IDL. For these types, the

value nul |

is not legal.

[AttributeUsage(AttributeTargets. Paraneter
Attribut eTargets. ReturnVal ue |
AttributeTargets. Property)]

public seal ed class WdeCharAttribute :

Attribute,

I
AttributeTargets. Field |

| DLAttri bute {

25/44

IDL S CLS Mapping specification

ELCA

public WdeCharAttribute(bool isAllowed);
public bool IsAllowed {get;}

}

[AttributeUsage(AttributeTargets. Paraneter |
AttributeTargets. ReturnValue | AttributeTargets.Field |
AttributeTargets. Property)]

public sealed class StringVal ueAttribute :

Attribute, IDLAttribute {

}

3.4 IDLEntity Interface

All generated CLS conform classes and structures must inherit from
| DLENt i t y.This marker empty interface | DLEnt i ty is used in CLS to recognize
all types generated from IDL, and avoid their accidental remapping to the IDL.

3.5 Enum
The OMG IDL enum type is mapped to a CLS enumtype with implicit underlying
datatype Syst em | nt 32; the enum name and the enum element names are
mapped according to Section 3.1.

An CLS attribute | dl EnumAt t ri but e is used to specify, that a CLS enum is
mapped from an IDL enum.
[AttributeUsage(AttributeTargets. Enum]
public class Idl EnumAttribute : Attribute, IDLAttribute {
public Idl EnumAttribute();
}

3.5.1 Example

/1 1DL
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

/1 C#
[1dl EnumAttri but e]
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

3.6 Struct

OMG IDL st ruct s are mapped to CLS st r uct s inheriting from | DLEnt i t y and
having the attribute | dl St ruct Att ri but e. The name is mapped according to
Section 3.1.

The fields of the IDL struct and of the mapped CLS struct must be declared in the
same order. Each field is mapped according to name and type mapping rules.

[AttributeUsage(AttributeTargets. Struct)]
public class Idl StructAttribute : Attribute, IDLAttribute {
public Idl StructAttribute();

VvV 1.01/13.10.03/DUL, PRR 26 /44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

3.7 Union

An OMG IDL uni on is mapped to a CLS st ruct implementing | DLEnt i ty and
having the attribute | dl Uni onAt t ri but e. The name of the CLS struct is the
mapped IDL union name as described in section 3.1.

[AttributeUsage(AttributeTargets. Struct)]

public class ldlUnionAttribute : Attribute, IDLAttribute {
public 1dl UnionAttribute();

}

The struct has a parameterless default constructor.

The struct contains a private field m di scri m nat or to store the discriminator
value. The type of field m di scri ni nat or is the mapped idl discriminator type.

and it contains a private field m val ue to store the union value.and the field
m val ue is of type System.Object.

A publ i c property Di scri m nat or provides read-only access to the discriminator
value. The property has the type of the discriminator.

A switch-case defines one or more case labels and the corresponding union
element. For every switch-case the following is generated:

= A public accessor method with the name Get followed by the mapped
element name.
This method retrieves the union value. If one of this Get methods is called,
although the union holds a value belonging to another switch-case, a
BAD_OPERATI ON exception with minor code 34 should be throwed.

= A public modifier method with the name Set followed by the mapped element
name.
This methods sets the union value to the value of the first argument, which has
as type the element type. If the switch-case has more than one case label, the
modifier method allows to specify with a second argument which discriminator
value to use. If an invalid value (discriminator value doesn’t belong to this
switch-case) is passed here, a BAD _PARAMexception with minor code 34
should be throwed.

= Aprivat e field with the name m_ followed by the mapped element name.
The type of the field is the mapped element type.

If no default case is specified one additional method is generated:

= Apublic modifier method with the name Set Def aul t .
It takes one argument, which allows to specify, which discriminator value to use.
If an invalid value (discriminator value belongs to a switch-case) is passed here,
a BAD_PARAMexception with minor code 34 should be throwed.

Note: For simplicity the above method is also generated, if all possible discriminator
values are enumerated in the union.

VvV 1.01/13.10.03/DUL, PRR 27144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

To support serialisation and deserialisation, the union defines two additional static
private methods:

» Fieldlnfo GetFieldForDiscrimnator(discrimnator-type val).
This methods returns the Fi el dI nf o for the field corresponsing to the
discriminator value or null, if not in range.

3.7.1 Example

/1 1DL

nmodul e a {

nmodul e b {

uni on Exanpl eUni on switch(long) {

case 0: short valO;
case 1:
case 2: long vall;
defaul t: bool ean val 2;

s

H
H

Il C#
nanespace a.b {

[1dl Uni on]
public struct ExampleUnion : IldlEntity {

private System Int32 mdiscrimnator;
private SystemInt16 myval 0;

private System I nt32 mval 1;

private System Bool ean mval 2;

public SystemInt32 Discrimnator {

get {
return mdi scrimnnator;
}
}
public SystemIntl1l6 Getval 0() {
/] checks;
return muval O;
}

public void Setval O(SystemInt16 val) {
m val ue = val;
m di scri m nator = 0;

}
public SystemInt32 Getval 1() {
/] checks;
return myval 1;
V 1.01/13.10.03/DUL, PRR 28 /44

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
}
public void Setval 1(System Int32 val,
System I nt32 discrimnator) {
/'l check discrininator; set myval ue and
/'l mdiscrimnator
}
public System Bool en Getval 2() {
/] checks;
return myval 2;
}
public void Setval 2(System Bool ean val ,
System Int32 discrimnator) {
/'l check discrimnator; set mvalue and
/1 m.discrimnator
}
private static Fieldlnfo GetFieldForDi scrimnator(
System I nt32 discrimnator) {
switch(discrimnator) {
case 0: return s_type.CGetField(“mval 0", ..);
case 1,2: return s_type.CGetField(*"mvall”, ..);
default: return s_type.GetField(“mval2”, ..);
}
}
private static bool
Di scri m nat or Val ueQut si deCover edRange(
System I nt32 discrimntaor) {
return fal se;
}
}
}

3.8 Sequence

OMG IDL sequences are mapped to a one-dimensional arrays. The CLS array
element type is the mapped IDL sequence element type. The CLS type is
anonymous (like every CLS array), it is inlined where the OMG IDL typename is
used.

The mapped CLS array has the attribute | dl SequenceAttri bute.
[AttributeUsage(AttributeTargets. Paraneter |
AttributeTargets. ReturnValue | AttributeTargets.Field |
AttributeTargets. Property)]
public class Idl SequenceAttribute : Attribute, IDLAttribute
{

public |dl SequenceAttribute();

VvV 1.01/13.10.03/DUL, PRR 29 /44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

3.9 Array

OMG IDL arrays are not mapped the CLS (will be addressed in a future version).

3.10 Interface

An OMG IDL interface (concrete and abstract) is mapped to a CLS interface
extending | DLEnt i t y. The name of the CLS interface is the mapped IDL interface
name as described in section 3.1.

The mapped interfaces has the attribute | nt er f aceTypeAt t ri but e to distinguish
abstract from concrete interfaces during the serialization.
public enum | DLTypel nterface {
Concretelnterface,
Abstract | nterface,
Abst ract Val ueType

}

[AttributeUsage(AttributeTargets.|Interface)]
public class InterfaceTypeAttribute : Attribute,
| DLAttri bute {
public InterfaceTypeAttribute(lDLTypel nterface
i dl Type);
public IDLTypelnterface | DLType {get;}
}

3.10.1 Inheritance Hierarchy Mapping

The inheritance relationship of the OMG IDL class is preserved; except for
CORBA: : (bj ect and CORBA: : Abst r act Base, all inherited interfaces are mapped
to the CLS and included in the mapped interface inheritance relationship.

3.10.2 IDL-Attributes

OMG IDL attributes are mapped to CLS public properties with get and set

accessors; readonly attributes have only the get accessor. The type of the attribute

is mapped to the CLS, and its mapped name is used in the property’s declaration.
3.10.3 Methods

OMG IDL methods are mapped to methods in CLS. The method name is mapped
according to Section 3.1; the return type is mapped to a CLS type.

All method’s parameters are mapped in the same order as in the OMG IDL
declaration.

3.10.3.1 Method Parameter passing modes
Passing modes are mapped as follows:

IDL parameter mode | CLS parameter mode

in

VvV 1.01/13.10.03/DUL, PRR 30/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

out out

i nout r ef

3.10.3.2 Raise Clause
Raise clauses are ignored, because the CLS’ methods have no support for them.

The exceptions in the raise clause are mapped to the CLS according to Section
3.11.8.

3.10.4 #pragma ID

If the OMG IDL type has an associated pragma ID, the CLS interface is marked with
the attribute Reposi toryl DAt tri but e parametrized with the actual id.
[AttributeUsage(AttributeTargets. d ass |
AttributeTargets.Interface | AttributeTargets. Struct)]
public class Repositoryl DAttribute : Attribute, IDLAttribute

{
public RepositorylDAttribute(string id);
public string Id {get;}
}
3.10.5 Example
/1 1DL
nodul e a {
nodul e b {
abstract interface Baselnterface {
| ong net hodl(long argl, short arg2);
voi d et hod2();
3
#pragna | D Baselnterface "I DL: a/ b/ Baselnterface: 1. 0"
interface Extlnterface : Baselnterface {
bj ect et hod3() ;
voi d nmet hod4(long argl) ;
3
#pragma | D Extlnterface "I1DL:a/b/Extlnterface:1.0"
}
3
Il C#

nanespace a.b {
[Repositoryl DAttri bute(“1DL: a/ b/ Basel nterface: 1.0")]
[InterfaceTypeAttribute(lDLType. Abstractinterface)]
public interface Baselnterface : IDLEntity {
int nethodl(int argl, short arg2);
voi d net hod2();
}
[Repositoryl DAttribute(“1DL:a/b/Extlnterface: 1.0")]
[InterfaceTypeAttribute(lDLType. Concretelnterface)]
public interface Extlnterface : Baselnterface, IDLEntity {
Mar shal ByRef Cbj ect net hod3() ;

VvV 1.01/13.10.03/DUL, PRR 31/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

voi d nethod4(int argl);

}
}

3.10.6 CORBA::Object

The OMG IDL type CORBA: : (bj ect is mapped to the CLS type
Mar shal ByRef Qbj ect .

CORBA: : (bj ect is the interface implemented by all remotely accessible objects, all
IDL-interfaces implicitely inherit from it.

3.10.7 CORBA::AbstractBase

The OMG IDL type CORBA: : Abst r act Base is mapped to the CLS type
System (bj ect .

All abstract interfaces inherit from Cor ba: : Abst r act Base.

To tell AbstractBase apart from Object, CLS fields and parameters are marked with
the attibute Qbj ect 1 dl TypeAttri but e with value | DLType. Abstr act Base.
public enum | DLTypeObj ect {
Any,
Abst r act Base,
Val ueBase

[AttributeUsage(AttributeTargets. Paraneter |
AttributeTargets. ReturnValue | AttributeTargets.Field |
AttributeTargets. Property)]

public class ojectldl TypeAttribute : Attribute,

Idl Attribute {
public Cbjectldl TypeAttribute(ldl TypeCbject idl Type);
public I DLTypeChject IdlLType {get;}

}

Hint: Whenever this attribute is present, a runtime-check is performed to ensure that
the actual value is a valid Cor ba: : Abst r act Base.

3.11 Value Types

IDL val uet ypes instances are passed by value. The mapping for concrete
valuetypes (Section 3.11.5) differs from the mapping for abstract valuetypes
(Section 3.11.6).

3.11.1 #pragma ID
The rules defined in Section 3.10.4 are used.

3.11.2 Inheritance

All inherited valuetypes and supported interfaces are mapped to the CLS; the
inheritance relationships are maintained.

VvV 1.01/13.10.03/DUL, PRR 32/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

3.11.3 Methods

OMG IDL operations are mapped to CLS abstract methods. The operation name is
mapped according to Section 3.1; the return type is mapped to the CLS; all
parameters are mapped in the same order as in the OMG IDL. The name of the
mapped parameters is not relevant.

3.11.3.1 Parameter passing modes
Parameter passing modes are mapped according to Section 3.10.3.1.

Note: Operations for value types are local operations. Therefore the parameters are
not marshalled / unmarshalled.

3.11.4 IDL-Attributes
Mapped according to Section 3.10.2.

3.11.5 Concrete Value Types

An IDL concrete value type is mapped to a CLS abstract class implementing the
marker interface | DLEnt i t y and having the Seri al i zabl e attribute.

Inheritance is mapped according to Section 3.11.2, method are mapped according
to Section 3.11.3, attributes are mapped according to Section 3.11.4.

3.11.5.1 State members

State members are mapped to corresponding CLS fields. Public state members are
mapped to CLS public fields and private state members are mapped to CLS
protected members.

3.11.5.2 Truncation

Truncatable valuetypes are not mapped to the CLS; truncatable types will be
supported in a future version of this mapping.

3.11.5.3 Type Implementation

Hint: An implementation for the value type must be provided. As a convention, the
marshaller will search for a class whose name is defined in the

I mpl C assAttri but e attached to the mapped class; by default, the
implementation name is the mapped type name suffixed by “I npl ”. If no such
implementation class can be found, the marshaller must throw a No_| npl enent
exception with minor-code = 1.

The implementation class must inherit from the mapped class, be serializable,
implement the abstract methods and properties defined in the val uet ype, and
provide a parameterless constructor.
[AttributeUsage(AttributeTargets. d ass)]
public class InplCassAttribute : Attribute, IDLAttribute {
public InpldassAttribute(string inpld ass);
public string I npl d ass{get;}
}

By default, each mapped class carries the attribute | npl G assAttri but e whose
value is the class name suffixed by the string “I npl ”

VvV 1.01/13.10.03/DUL, PRR 33/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification
ELCA

3.11.6 Abstract Value Types
Abstract value types can’t have state.

OMG IDL abstract value types are mapped to CLS interfaces extending
| DLEntity.

Inheritance, methods, and attributes are mapped like in a concrete value type
(Section 3.11.5). No implementation class is needed.

To distinguish abstract values from abstract and concrete interfaces, the mapped
type carries the CLS attribute | nt er f aceTypeAt t ri but e with value
| DLTypel nterface. Abstract Val ueType

3.11.6.1 Example

/1 1DL
nodul e a {
abstract val uetype Abstract Val ueType {
bool ean check(in long val);
1

#pragma | D Abstract Val ueType "I DL: a/ Abstract Val ueType: 1. 0"

val uet ype Val ueTypeNr1l : Abstract Val ueType {
public long x;
private |ong z;
void inc();
void test(in long x, in long vy);
3
#pragma | D Val ueTypeNr1 "I DL: a/ Val ueTypeNr1: 1. 0"
1
Il C#
nanespace a {
[Repositoryl DAttri bute(”1DL: a/ Abstract Val ueType: 1.0")]
[InterfaceTypeAttribute(lDLType. Abstract Val ueType)]
public interface AbstractVal ueType : IDLEntity {
bool check(int val);
}

[npl A assAttribute(“a. Val ueTypeNr 1l npl ”)]
[Repositoryl DAttri bute(“1DL: a/ Val ueTypeNr1:1.0")]
[Serializabl e]
public abstract class ValueTypeNrl : Abstract Val ueType,
I DLEntity {
public int x;
protected int z;
public abstract bool check(int val);
public abstract void inc();
public abstract void test(int x, int y);

}
}

/1 the user mnmust provide the follow ng class:
nanespace a {

VvV 1.01/13.10.03/DUL, PRR 34144
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
[Serializabl e]
public class Val ueTypeNr 1l npl : Val ueTypeNrl {
public override bool check(int val) {
/[l do it
}
public override void inc() {
/[l do it
}
public override void test(int x, int y) {
/[l do it
}
}
}

3.11.7 Boxed Value Types

Boxed value types are a shorthand notation for valuetypes containing only one
member. Boxed value types cannot be extended.

There are two mapping for boxed value types.

The first mapping is the generic one: it maps them to CLS classes according to the
rules in Section 3.11.5. The boxed valuetype name is mapped to the a CLS name.
The mapped class must implement Ch. El ca. | i op. | dl . BoxedVal ueBase and
I 1dl Entity and be serializable.

The second mapping is optimized for fields, parameters, properties and return types:
it directly uses the type of the boxed type’s field. Additionaly, the member must carry
the attribute BoxedVal ueAttri but e.

[AttributeUsage(AttributeTargets. Paraneter |
AttributeTargets. ReturnValue | AttributeTargets.Field |
AttributeTargets. Property)]

public class BoxedVal ueAttribute : Attribute, IDLAttribute {

publ i ¢ BoxedVal ueAttribute(string repositorylD);
public string RepositorylD {get;}

}

public abstract class BoxedVal ueBase {
publ i c BoxedVal ueBase() {..}
public object unbox() {.}
public abstract object GetVal ue();

}
3.11.7.1 Example

/1 1DL

#pragma | D seql_long “IDL: org/ ong/ BoxedArray/seql_l ong:1.0"
val uetype seql | ong sequence<l| ong>;

Il C#

/1 1f the above type

/! occurs in nethod signature, field declarations it’'s

/1 replaced by int[].

VvV 1.01/13.10.03/DUL, PRR 35/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

/! type representing boxed val ue type
namespace org. ong. boxedRM {

[Repositoryl DAttri bute("RM :[1:0000000000000000")]

[Serializable]

public class seql long : Ch.Elca.liop.|dl.BoxedVal ueBase,
I1dlEntity {

[| DLSequence]
private int[] muval;

/1] <summary> constructor used for deserialisation
[1]</summary>
public seql_|ong() {

}

public seql_long(int[] arg) {
/1 assign mval fromint[]

/1 null is not allowed
}
/1 inplenmentation details
11

Note: The above mapping is also chosen because the CLS to IDL mapping does
map arrays to a boxed valuetype. Therefore with this mapping, the IDL to CLS
mapping reproduces a CLS array for this case.

3.11.8 CORBA::ValueBase

OMG IDL type CORBA: : Val ueBase is the abstract base class for all value types;
all valuetypes implicitely inherit from it.

CORBA: : Val ueBase is mapped to Syst em Qbj ect . All fields and parameters
having this type additionally carry the attribute Obj ect | dl TypeAttri but e
(Section 3.10.7) with value | DLType. Val ueBase.

Hint: Whenever this attribute is present, a runtime-check is performed to ensure that
the actual value is valid for Cor ba: : Val ueBase.

3.12 Exceptions

3.12.1 Mapping of CORBA Exceptions
All CORBA exceptions inherit from the abstract base class
Abst ract CORBASyst enExcept i on: The following table shows how to map the
exception name to the CLS.

namespace org. ony. CORBA {

public enum Conpl eti onStatus { Conpl eted_YES, Conpleted NO

VvV 1.01/13.10.03/DUL, PRR 36/44
ELCA Informatique SA, Switzerland, 2003.

ELCA

[Ser

Compl et ed_MayBe }

i al i zabl e]

IDL S CLS Mapping specification

public abstract class Abstract CORBASyst enException :

Exce

ption {

private int m.m nor;
public int Mnor {
get { return m.mnor;

}

}

private Conpl eti onStatus m stat us;
public ConpletionStatus Status {

get { return mstatus;

}

}

protected Abstract CORBASyst emException(string reason,

i nt m nor Code,

m_ni nor Code
m status = status;

Conpl eti onSt at us st at us)
m nor Code;

base(reason){

IDL-Exception

CLS class name

CORBA::
CORBA::
CORBA::
CORBA::
CORBA:
CORBA::
CORBA:
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::
CORBA::

UNKNOWN
BAD_PARAM
NO_MEMORY
IMP_LIMIT
:COMM_FAILURE
INV_OBJREF
:NO_PERMISSION
INTERNAL
MARSHAL
INITALIZE
NO_IMPLEMENT
BAD_TYPECODE
BAD_OPERATION
NO_RESOURCES
NO_RESPONSE
PERSIST_STORE
BAD INV_ORDER

org.omg.CORBA.UNKNOWN
org.omg.CORBA.BAD_PARAM
org.omg.CORBA.NO_MEMORY
org.omg.CORBA.IMP_LIMIT
org.omg.CORBA.COMM_FAILURE
org.omg.CORBA.INV_OBJREF
org.omg.CORBA.NO_PERMISSION
org.omg.CORBA.INTERNAL
org.omg.CORBA.MARSHAL
org.omg.CORBA.INITALIZE
org.omg.CORBA.NO_IMPLEMENT
org.omg.CORBA.BAD_TYPECODE
org.omg.CORBA.BAD_OPERATION
org.omg.CORBA.NO_RESOURCES
org.omg.CORBA.NO_RESPONSE
org.omg.CORBA.PERSIST_STORE
org.omg.CORBA.BAD INV ORDER

VvV 1.01/13.10.03/DUL, PRR

ELCA Informatique SA,

Switzerland, 2003.

37144

ELCA

IDL S CLS Mapping specification

IDL-Exception

CLS class name

CORBA
CORBA

CORBA::
CORBA::
CORBA::
CORBA::
CORBA:

CORBA
CORBA

CORBA:

CORBA::
CORBA:

CORBA:

CORBA

CORBA:

CORBA

CORBA::

“TRANSIENT

"FREE_MEM
INV_IDENT
INV_FLAG
INTF_REPOS
BAD_CONTEXT
:OBJ_ADAPTER
:DATA_CONVERSION
OBJECT_NOT_EXIST
:TRANSACTION_REQUIRED

INV_POLICY
:CODESET_INCOMPATIBLE

"-TRANSACTION_MODE

" TRANSACTION_UNAVAILABLE

‘REBIND
STIMEOUT
BAD QOS

org.omg.CORBA.TRANSIENT
org.omg.CORBA.FREE_MEM
org.omg.CORBA.INV_IDENT
org.omg.CORBA.INV_FLAG
org.omg.CORBA.INTF_REPOS
org.omg.CORBA.BAD_CONTEXT
org.omg.CORBA.OBJ_ADAPTER
org.omg. CORBA.DATA_CONVERSION
org.omg. CORBA.OBJECT_NOT_EXIST

org.omg.
CORBA.TRANSACTION_REQUIRED

org.omg. CORBA.INV_POLICY

org.omg.
CORBA.CODESET_INCOMPATIBLE

org.omg.
CORBA.TRANSACTION_MODE

org.omg.
CORBA.TRANSACTION_UNAVAILABLE

org.omg. CORBA.REBIND
org.omg. CORBA.TIMEOUT
org.omg. CORBA.BAD QOS

3.12.2 Mapping

of user defined Exceptions

OMG IDL user exceptions are mapped to a CLS class. The class must extend
or g. ong. CORBA. Abst ract User Except i on. The exception members are

mapped to public properties of this subclass.

namesp

[Ser

public abstract class AbstractUser Exception :

ace org.ong. CORBA {

i al i zabl e]

private string mreason;

public string Reason {
get {
}

return mreason;

Exception {

}

public AbstractUser Exception() { }

protected Abstract User Excepti on(string reason)

base(reason) {

}

VvV 1.01/13.10.03/DUL, PRR

ELCA Informatique SA,

Switzerland, 2003.

38/44

IDL S CLS Mapping specification

ELCA

3.13 Any
OMG IDL any is mapped to CLS Syst em hj ect .
The serialization of any types must carry a typecode.

Parameters and fields with type any must carry CLS attribute

bj ect 1 dl TypeAttri but e with value | DLType. Any is assigned to the
parameters and fields with IDL-type any (see Section 3.10.7 for

hj ect 1 dl TypeAttri but e’s definition). This attribute is the information needed
by the serializer to handle any correctly.

3.14 Nested Types

OMG IDL nested types are mapped to CLS non-nested types according to the type
mapping rules. The nested type is declared in a new namespace inside the
container type’s hamespace, whose name is the mapped type name suffixed with

“ _package”.

3.15 TypeDef

OMG IDL t ypedef are not mapped; wherever an aliased type names is used in the
IDL, it is substitued with the canonical type name in the CLS.

3.16 Constants

For every IDL constant, a public sealed class with the name of the constant is
created.

This class is declared in the following namespace:

» if the constant is defined inside a type (e.g. an interface), the namespace is
created in the same way as for nested types, see section 3.14.

» if the constant is defined outside a type, the module namespace is used.
The class contains the following items:

= apublic static readonly field with the name Const Val and type of the constant.
It stores the value of the constant.

= @ static initalizer for setting the constant value.
» a private default constructor to prevent creating instances of the class.

3.16.1.1 Example

/1 1DL
nmodul e test {
interface X {

VvV 1.01/13.10.03/DUL, PRR 39/44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification
ELCA

const I ong MyConstant = 11;
1
1

Il CH#
nanespace test. X package {
public seal ed cl ass MyConstant {
public static readonly ConstVal;

static MyConstant () {
Const Val = 11,
}

private MyConstant () {
}

}

/1 interface nmapping ...

3.17 Used Attributes
The following table summarizes all CLS-attributes used in the mapped types.

Attribute Purpose Usage Definition
in

Repositoryl DAttri bute bind an IDL repository Class, 3.10.4

attribute to a CLS type struct,
interface

I mpl Gl assAttribute name of the class Class 3.11.5.3
implementing the
valuetype

Idl StructAttribute original type is an IDL Struct 3.6
struct

| dl EnumAttri bute original type is an IDL Enum 3.5
enum

I dl Uni onAttribute original type is an IDL Union 3.7
uni on

BoxedVal ueAttri bute indicate a mapping Parameter, 3.11.7

from the boxed value Field,
type with the specified ReturnType,
repository id Property

VvV 1.01/13.10.03/DUL, PRR 40/ 44
ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA
Attribute Purpose Usage Definition
in
| dl SequenceAttribute original type is an IDL Parameter, 3.8
sequence Field,
ReturnType,
Property
InterfaceTypeAttribute indicates whether the Interface 3.10
original IDL type is a
concrete interface, an
abstract interface, or an
abstract value type
Qoj ect 1 dl TypeAttri bute indicates whether the Parameter, 3.10.7
original IDL type is any, Field,
AbstractBase, or ReturnType,
ValueBase Property
W deChar Attri bute specifies if wide Parameter, 3.3.2
characters are allowed. Field,
ReturnType,
Property
StringVal ueAttribute specifies whether the Parameter, 3.3.2
original IDL type is Field,
string or wstring ReturnType,
Property
VvV 1.01/13.10.03/DUL, PRR 41144

ELCA Informatique SA, Switzerland, 2003.

IDL S CLS Mapping specification

ELCA

4 Marshalling / Unmarshalling

This section describes how to marshal and unmarshal the data passed during a
distributed method call.

The marshalling process generates for each instance a serialized form suitable for
transport. The unmarshalling process reconstructs the instances based on the
serialized form.

Usually, marshalling and unmarshalling depends on the static type, i.e. the type
present in the declaration of the member to be converted. In some cases where the
type mapping is ambiguous, the marshaller must decide at run-time which
conversion to use, depending on the dynamic type or on the custom attributes on
the type. Some runtime tests may also be required to intercept illegal values,
whenever the source and destination type have different domains.

4.1 Marshalling of Parameters During Methods Calls
Method parameters are serialized according to the formal parameter type™:

= compatible with Mar shal By Ref Cbj ect
The actual parameter is passed by reference.

= conforming value type
The actual parameter is passed by value

= non-conforming value type
If the actual parameter type is a conforming value type, the parameter is passed
by value; otherwise an exception is thrown.

= System bj ect
The serialization of the formal parameter depends on the
bj ect 1 dl TypeAttri but e, which specifies the original OMG IDL type.

ObjectldITypeAttribute Serialized as
| DLType. Any or omitted OMG IDL any
| DLType. Abstract Base Abstract interface

| DLType. Val ueBase By value

» Interface
The serialization of the formal parameter depends on the InterfaceTypeAttribute

InterfaceTypeAttribute Serialized as
| DLType. Concretel nterface By reference
| DLType. Abst r act Val ue By value

| DLType. Abstract I nterface or Depending on the object’s dynamic
omitted type:

' The type in the method signature

VvV 1.01/13.10.03/DUL, PRR 42/ 44
ELCA Informatique SA, Switzerland, 2003.

ELCA

IDL S CLS Mapping specification

* MarshalByRef: by reference
* MarshalByValue: by value
e Serializable: by value

+ Otherwise: error condition

enum
Parameter is passed by value.

struct with | DLSt r uct attribute
Parameter is passed by value.

array
Parameter is passed by value.

4.2 Marshalling / Unmarshalling of Value-Types

The value type is serialised/deserialised as described in the CORBA spec. The
fields of the value type are serialised/deserialised in the order of their declaration.
The serialization starts with the highest possible base type and continues up to the
most derived type.

The marshalling of the fields is done according to their formal type:

MarshalByRef
the field is serialized by reference.

conforming CLS value type
the field is serialized by value.

non-conforming CLS value type
if the value is a conforming value type, the field is serialized by value is passed,;
otherwise an exception is thrown

Syst em (bj ect
the serialization depends on the ObjectldITypeAttribute associated to the field:

ObjectldITypeAttribte Serialized as
IDLType.Any or none OMG IDL any
IDLType.AbstractBase Abstract interface
IDLType.ValueBase value

Interface

The serialization of the formal parameter depends on the InterfaceTypeAttribute

InterfaceTypeAttribute Serialized as
| DLType. Concretel nterface By reference
| DLType. Abst r act Val ue By value
| DLType. Abstract I nterface or Depending on the object’'s dynamic
omitted type:
Vv 1.01/13.10.03/DUL, PRR 43 /44

ELCA Informatique SA, Switzerland, 2003.

ELCA

IDL S CLS Mapping specification

MarshalByRef: by reference
MarshalByValue: by value
Serializable: by value

Otherwise: error condition

= enum
Parameter is passed by value.

= struct with | DLSt r uct attribute
Parameter is passed by value.

= array
Parameter is passed by value.

VvV 1.01/13.10.03/DUL, PRR
ELCA Informatique SA, Switzerland, 2003.

44 | 44

